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ABSTRACT 
Semi-rigid and rigid structures have been utilized in many on-body 
applications including musculoskeletal support (e.g., braces and 
splints). However, most of these support structures are not very 
compliant, so efortless custom ftting becomes a unique design 
challenge. Furthermore, the weight and space needed to trans-
port these structures impede adoption in mobile environments. 
Here, we introduce ExoForm, a compact, customizable, and semi-
rigid wearable material system with self-fusing edges that can 
semi-autonomously assemble on-demand while providing inte-
grated sensing, control, and mobility. We present a comprehensive 
and holistic engineering strategy that includes optimized mate-
rial composition, computationally-guided design and fabrication, 
semi-autonomous self-morphing assembly and fusing steps, heating 
control, and sensing for our easy-to-wear ExoForm. Finally, we fabri-
cate wearable braces using the ExoForm method as a demonstration 
along with preliminary evaluation of ExoForm’s performance. 
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1 INTRODUCTION 
Until recently, the majority of orthotic devices were designed and 
hand-crafted by medical professionals. Therefore, the quality and 
design corresponded directly to the specialist’s skill and experi-
ence [39]. Of the shelf solutions are usually temporary and not 
customized for each user, while custom casts require 3D scanning 
and printing or form casting [29]. The desire for user-specifc, time-
efcient, lightweight, and adjustable solutions is of great impor-
tance, especially when access to clinical facilities is restricted. 

This paper introduces ExoForm, a novel design and fabrication 
solution for dynamic orthotic devices. Our technique augments 
semi-rigid wearables for immediate, self-morphing, adjustable, and 
repeatable use that ofers user-specifc conformability even at re-
mote sites, without dependence on medical professionals. 

We were inspired to use heat to soften a fat thermoplastic sheet 
to then remold and adjust it around the body for user specifcity 
[14, 19]. Distinctively, these wearables are easy to store and trans-
port through fat-packing their initial, 2D form. Unfortunately, ex-
isting artifacts were either small (e.g., a fnger splint in [19] or 
simple shapes (e.g., a wristband in Hotfex [14]). Furthermore, they 
cannot successfully support complex parts of the body. Finally, pre-
heated pieces may cool before tricky, manual on-body adjustment 
is fnished. 

Building on prior work, we propose an active, semi-autonomous 
self-morphing process for light wearables that have initially fat 
forms and morph when heated. ExoForm furthers the advanta-
geous, on-body adjustment procedure, suggested by Hofmann et 
al. [14, 19], with a self-folding behavior that establishes a loose-ft 
before on body adjustment forms a personalized ft, allowing for 
easier application. These behaviors are initialized in ExoForm’s 
multilayer composite structure and controlled through a combina-
tion of material selection, directionality, and design. Moreover, by 
choosing many body areas to cover, we demonstrate how ExoForm 
can be applied to various sizes and geometries, well beyond those 
which have been demonstrated. 

2 RELATED WORK 

2.1 4D Printing and Shape Changing Interfaces 
CHI ’21 Extended Abstracts, May 08–13, 2021, Yokohama, Japan Shape changing interfaces have been developed using pneumatic 
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Figure 1: ExoForm is a set of semi-rigid wearables that 
demonstrate morphability and customizability in splints. 

and dynamic designs emerge via embedded, pre-programed stimu-
lus responses in 3D printed shape memory materials [31, 60] like 
polylactic acid (PLA) [2, 48, 56, 57, 67], polycaprolactone [22, 49], 
polyurethanes [17, 33], and shape memory alloys [5, 68]. Mimick-
ing morphing behaviors in nature [38], these are triggered with 
stimuli including humidity, temperature, or solvents. 4D printing 
has been used in biomimetic applications [21, 34, 50] and robotics 
[47], and, in Human-Computer Interaction (HCI), it has even been 
applied to furniture assembly [57] and cooking approaches [58]. 
Many shape changing interfaces were developed by transforming 
2D, PLA meshes and sheets into 3D geometries [2, 57]. Unfortu-
nately, this transformation cannot be reversed and requires external 
heating tools. Other approaches, Printed Paper Actuator [55] and 
particle jamming [40], demonstrated reversible shape changes but 
were limited by structural rigidity or external energy sources. 

2.2 Custom Wearables 
Thermoforming has been used to fabricate custom wearables using 
the softening properties of thermoplastics at elevated temperatures 
in mouth guards [51, 52], contact lenses [10, 43], and casts [20] 
(FastForm, Breg. Inc). In HCI, Hofman et al. customized a sup-
portive wearable using thermally moldable thermoplastics [19]. 
However, it required external heating sources to reach a moldable 
state, and, without an initial shape change, it is difcult to apply 
these wearables in a timely manner, over complex body structures. 

Conversely, user-specifc wearables have been developed with 
3D printing. In the HCI community, a common approach involves 
modelling before 3D printing to achieve a personal ft for rigid 
[29, 65] or stretchable wearables [30]. One industry example, Os-
teoid, also used this approach for their cast [39]. While these 
achieve perfect custom fts for each user, they require complex, 
time-consuming editing of body scans. 

2.3 Resistive Heating 
Resistive heaters enable heat interactive interfaces without external 
triggering tools. These have been used in thermoreactive interfaces 
[26, 54], tunable skin interfaces [24], and shape-changing mecha-
nisms. Resistive heaters are also efective on fexible circuit com-
posites [16] and paper [55]. Prior work has applied resistive heaters 
to shape memory pre-stretched polystyrene (PSPS) for self-folding 
robots [11]. However, the temperature for triggering that efect is 
up to 160°C, too dangerous for wearable applications. Hotfex [14] 
showed free-form remodeling of PLA objects at lower temperature, 

but the heater primarily provided heat to a region without active 
actuation. In designing these heaters, there are also many conduc-
tive materials to consider alongside fabrication including sewing, 
weaving, or cutting conductive thread [6, 8, 26], inkjet printing sil-
ver ink [37, 54], etching copper plates [11], 3D printing composite 
flament [55], compressing and laser cutting conductive polymer 
pellets coated with liquid metal [44] and applying gold leaf [25]. 

3 DESIGN STRATEGY 
ExoForm augments existing technology by demonstrating morpha-
bility and customizability with closed-loop feedback for sensing and 
control in wearable splints. To best support the body and healing 
process, we introduce a shape memory semi-autonomous wear-
ing procedure, self-fusing edges, and reversible actuation. For our 
wearing procedure, we use shape-memory materials that are pre-
programmed to fold into a specifc shape upon heating. ExoForm 
has a multi-step deployment procedure: Users wrap 3 layers of 
gauze around the body to protect the skin. Then, of-body standard-
ized bending via shape-memory and resistive heating initializes a 
rough ft (Figure 2 a-b). Finally, an on-body tight ft is established 
via manual sculpting (Figure 2 c). To join multiple parts or modules, 
ExoForm also features self-fusing edges which heal over time at 
room temperature to form cohesive structures. Additionally, we 
introduce reversible actuation for functional, temporal adjustment 
which allows users to readjust the wearable as they heal. The user 
can also use this feature to fatten the part and store it for future 
use. 

Figure 2: (a) Initial fat state of ExoForm. (b) Layers of gauze 
wrapped around the body part. (c) Step 1: of-body rough ft 
with self-folding. (d) Step 2: on-body manual tight ft with 
conformability. 

4 EXOFORM COMPOSITION 
To achieve our design strategy, we propose the following basic 
layer-composite (Figure 3). It is made of multiple layers: a constraint 
and protection layer, an actuation layer, a resistive heating layer, 
self-fusing edges, and a sensing and control layer for augmenting 
the design. Literature has shown that PLA is the one of the most 
commonly used biodegradable polymers in clinical applications 
with examples including long-term implantable devices [45]. Thus, 
the use of PLA is safe to be used in external wearable applications. 
Double sided tape (3M VHB tape, F9560PC, 0.05mm) is used to bond 
functional layers. This layer-composite is also suitable for on-skin 
applications. 

4.1 Actuation and Constraint Layer 
It has been difcult to control the transformation of PLA actuators 
longer than 10cm [57], so we adopt a novel PET constraint layer 
to improve bending performance. Figure 4 shows a simple PLA 
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Figure 3: Layered structure for each semi-rigid wearable. 

actuator, large enough to wrap halfway around the neck (15cm x 
1.5cm), with and without PET flm (0.6mm). The PET flm helps 
achieve reversible actuation and increases the beam’s efective 
strength compared to paper [55, 57]. This works with PET’s higher 
glass transition temperature such that PET is not impacted during 
PLA actuation. This actuation also depends on PLA’s thickness. 
Figure 5 shows how the thickness of PLA, deposited by a Makerbot 
(Replicator 2x) 3D printer at 4000mm/s, afects the composite’s 
bending angle. Considering maximum bending curvature, efective 
strength, and efciency of heating, we choose a thickness of 1mm 
for the PLA, actuation layer in our sample artifacts. 

Figure 4: Bending actuator at neck brace scale (15cm x 1.5cm) 
using: (a) PLA 0.5mm actuator and 0.5mm constrain layer (b) 
PLA 1mm actuator taped to PET flm, each triggered in an 
oven at 75oC for 1 min. 

Figure 5: Bending angles with diferent PLA layer thickness, 
all samples are triggered in an oven at 75oC for 1 min. 

While conventional 4D-printed actuators were for non-reversible 
self-folding, the addition of a stif PET layer, with a higher glass 
transition temperature, also enables reversible bending and fat-
tening, which allows for readjustment of the cast. This property is 
leveraged to develop the functional feature mentioned earlier for 
reversible actuation and temporal readjustment of the wearables. 

4.2 Self-fusing Layer 
With ExoForm’s self-fusing edges, users apply each part or module 
sequentially, so ExoForm fuses into one piece on the body (Figure 6). 

This approach simplifes transport and assembly of larger wearables. 
Literature has reported very efective re-healability of the self-
fusing materials (Thinking Putty, Crazy Aaron’s) we adopted [61]. 
Mechanical and electrical properties recover completely after 6 
hours, and the self-fusing process begins immediately after the 
two edges come into contact, as demonstrated in Self-healing UI 
[36]. According to our test, after 2 mins of healing, we can move 
the body without breaking the self-fusing edges. Additionally, the 
self-fusing edges can be broken down and re-joined repetitively for 
reuse. 

Figure 6: (a-b) Thinking Putty applied to each module’s 
edges. (c) Self-fusing edges connect modules. 

4.3 Resistive Heating Layer 
Alongside investigating resistive heater materials, we contribute a 
strategy to select, characterize, and design heater patterns. We use a 
70 to 80°C temperature range [2, 56] to morph ExoForm for of-body 
rough ftting, which takes 60 seconds. Our prototypes use recharge-
able 9V lithium batteries with a maximum power supply (Vmax) of 
10V, and maximum current (Imax) is set to 2.5A for user safety. We 
also design a handle for users to hold while heating to avoid burns. 
To select a heater material, we consider conductivity, fexibility, and 
manufacturability. We frst evaluated power consumption by calcu-
lating the normalized power per area to heat to 75°C within 60s (Pn) 
[15]. Pn is defned by P/LW, where P is total power consumption, 
L is the length, and W is the width of the trace. We fabricated 5 
mm (W) x 20 mm (L) samples and placed them on a PLA sheet. 
The thickness of each material is determined by fabrication, for 
silver ink and MWCNTs-PBS, and by of-the-shelf availability, for 
fabrics and foil. Power is then provided to heat the samples to 75°C 
within 60s, and trials were repeated three times. Figure 7 shows 
these results. For ExoForm, the selected material depends on each 
design’s required trace length. Designs with large surface area used 
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Figure 7: Heater property characterization with each mate-
rial heated up to 75°C within 60s. 

copper foil while smaller designs had silver printed directly on the 
PET flm. 

Inspired by Cartolano et al. [6], we use the pattern in Figure 
8(a-b), where w is the trace width and g is the gap. To demonstrate, 
our neck design uses a 1.5mm trace width and 1mm gaps, with 
calculated trace length of 574.08cm. Copper foil is the best material, 
and two 9V batteries are required to heat the part. Our theoretical 
calculation found a 9 V, 800 mAh battery will last at 4.5 A for 10.7 
mins for this sample. Figure 8(c-d) shows the fabricated copper 
heater and fnal heating map. 

4.4 Augmented Sensing and Control Layer 
We integrated a sensing and control system to assist users. A tem-
perature feedback control unit maintains a heating temperature 
of 75°C, a temperature sensor with an LED indicates when a safe 
handling temperature (60°C) is reached, and an optical sensor and 
LED indicates tightness. Figure 9 shows these. 

An Arduino microcontroller, negative temperature coef-
cient (NTC) thermistor, and n-channel power metal–oxide– 
semiconductor feld-efect transistor (MOSFET) keep the 75°C heat-
ing temperature using proportional control [41]. The microcon-
troller monitors this by translating thermistor resistance to temper-
ature through a Steinhart-Hart equation [14]. Experimentally, the 
temperature sensing accuracy is 1 ± 1°C. 

A red LED shows when ExoForm is unsafe to touch, above 60°C, 
and a separate white LED shows when the sample cools below 60°C 
(Figure 10a-b). A light sensor detects ambient light density close 

to the skin to detect tightness. The white LED glows brightly and 
dims as the wearable is tightened (Figure 10c-d). 

5 EXOFORM PROCESS 

5.1 Design and Simulation 
ExoForm patterns are designed by interweaving active actuators 
with passive grids. While the actuators morph to ft around a user, 
the grids enhance mechanical performance to support the body 
and restrict motion. An Abaqus FEA simulation can then be run to 
visualize that structure’s approximate morphing behavior, using ma-
terial properties obtained from [64]. Results show how a sample’s 
deformation is afected by design changes, in a trial and error ap-
proach, that helps ensure ExoForm fts complex target geometries, 
as seen in Figure 11 

5.2 Fabrication 
The generic fabrication process is shown in Figure 12. For other sam-
ples, silver traces were printed with an inkjet printer (ElectroUV3D, 
ChemCubed), MWCNTs-PBS was doctor-bladed, and other layers 
were CNC cut (Curio, Silhouette America) and bonded using double 
sided tape (VHB, 3M). 

For better self-fusing material adhesion, we propose the doctor 
blading and curing procedure depicted in Figure 13 (a-c). First, we 
spread dispersed, uncured MWCNTs-PBS on the PET side of a 
design (Figure 13a) and then use a flm applicator to make a flm of 
0.5mm (Figure 13b). The sample is cured at 50 °C for 12 hours (Figure 
13c). Alternatively, for Thinking Putty, by printing the edges as a 
mesh and adding the putty, we ensure optimal adhesion between 
the two layers (Figure 13b) as the pores act like a cage to hold 
the putty while allowing it to fuse with the opposite edge. Both 
materials perform well, with a tradeof between fabrication time 
and consistency; Thinking Putty application time is short but not 
as precise as MWCNTs-PBS. 

6 DEMONSTRATIONAL ARTIFACTS 
Using ExoForm’s pipeline, we fabricated fve diferent wearables 
which act as brace structures to restrict joint motion. Echoing the 

Figure 8: (a) Heater pattern design and parameter defnition. (b) Neck model with designed heater trace. (c) Real photo of neck 
sample with heater fabricated. (d) Heat map when the piece is uniformly heated up to 75 °C. 

Figure 9: Temperature feedback control circuit: (a) Circuit diagram and (b) Fabricated circuit on PLA. Temperature and light 
sensing circuit: (c) Circuit diagram and (d) Fabricated on neck support. 
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Figure 10: (a-b) Red glows above 60°C, turns white once below (c-d) White LED indicates tightness of ft. 

Figure 11: (a1) Initial design (a2-a3) Visual simulation feedback for bending and ft (b1) Designer updates design with two 
actuated curves on the sides (b1-b3) Simulation shows the updated design fts better. 

Figure 12: (a) electronics assembly (b) building connections 
(c) bonding tape (d) cutting heater. 

design strategy mentioned earlier, we highlight the following com-
mon design features. 

6.1 Semi-autonomous Two Step Assembly 
Figure 14 shows how ExoForm was designed for diferent joints and 
follows the two-step process of an of-body loose ft and subsequent 
on-body tight ft. 

6.2 Self-fusing Edges 
With examples in Figure 15, we added self-fusing edges to ensure 
ExoForm will form one, cohesive piece on the body. If a brace has 
multiple modules, users can place each sequentially and fuse the 
bonding regions by pressing the self-fusing edges together. 

6.3 Reversible Actuation 
We introduced functional, temporal adjustment to accommodate 
changes throughout the healing process. To maintain tight ft for 
support, the wearer can reheat and sculpt their wearable. Using 
resistive heating, the piece unfolds to its more fattened shape, and 
the user can either create a tighter ft or fatten completely to store 
the part for future use (Figure 16). 

6.4 Flat-Packing 
Flat-packing saves space for ease of transport. Figure 17 compares 
the total volume taken up before and after ExoForm assembly. Flat 
packing saves nearly 95% of the volume taken up by the assembled 
parts. 

7 TEMPERATURE EVALUATION 
Users’ hands will mold PLA at 60°C, but literature [14] and com-
mercially available products [69] have demonstrated this safely 

because PLA has high heat capacity, low thermal conductivity, and 
a fast cooling rate [14]. To reduce the temperature experienced on 
the skin to 43.5°C, the pain threshold for nerve fbers [32], we rec-
ommend users wrap gauze around their body. Figure 18(a) shows 
ExoForm cooling for about a minute from 60°C to 43.5°C. Using 
a hot plate at 60°C, we conclude 4 layers of gauze (Johnson and 
Johnson, 0.45mm) constricts the top layer’s temperature to 43.5°C 
for a minute, shown in Figure 18(b). 

8 LIMITATIONS AND FUTURE WORK 
In the future, we are interested in constructing more rigid casts. 
This may require a method to safely provide enough power to heat 
thicker materials uniformly. Still, ExoForm’s designs have demon-
strated their capability to restrict local motion. Currently, designers 
must carefully consider electronic components’ placement as they 
are rigid and cannot morph alongside ExoForm. We plan to inte-
grate computational design features to optimize such electronic 
layouts. Additionally, light sensing could only sense a limited area, 
but we could integrate more sensors along the edges for a more 
holistic approach. For the safety issue of inhalation of airborne 
MWCNTs, large bundles are formed in MWCNTs which were too 
heavy to become airborne. We anticipate some users will try Ex-
oForm on their bare skin and for this reason, we are planning to 
integrate an insulating layer into ExoForm’s structure to consis-
tently protect the user from heat and electricity. Still, many of these 
concerns and limitations will be better addressed through a user 
study letting multiple users wear ExoForm to better evaluate ft 
and support, comparing ExoForm to similar technologies. 

9 CONCLUSION 
Through this paper, we present ExoForm, a novel approach to the 
fabrication and design of semi-rigid wearables that incorporates 
semi-autonomous self-morphing process assembly, self-fusing ma-
terial, and on-board heating. This pipeline also addresses the addi-
tion of augmented sensing and control to aid in the ftting process. 
The work further investigates optimal resistive heating strategies. 
With these tools, we produce fve moldable braces which support 
diferent joints to demonstrate the versatility of ExoForm. By intro-
ducing material-assisted semi-autonomous assembly, in addition 
to a user interface, ExoForm outperforms existing technologies in 
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Figure 13: (a) Spread MWCNTs-PBS on the PET. (b) Use a flm applicator to make a thin flm. (c) Cured MWCNTs-PBS after 12 
hours in the oven. (d) PLA with printed mesh. (e) Applied Thinking Putty. (f) Two healed pieces. 

Figure 14: Two-step assembly process for fnger, ankle, elbow, and wrist braces. 

Figure 15: (a) Using thinking putty on the edge for elbow support (b) Using 1wt% MWCNTs-PBS for fnger support. 

Figure 16: Reversible folding and fattening process of the 
wearable with cables for batteries. 

Figure 17: (a) Total volume of fat artifacts is 224.22 cm3 (b) 
Total volume of artifacts after assembly is 3314.7 cm3 . 

Figure 18: (a) The heating and the cooling curve of ExoForm 
surfaces (only reach 60°C on copper traces, PLA surface and 
PET surface. (b) The temperature of the inner surface with 
diferent numbers of layers of gauze. 

creating on-demand, personalized wearables. Ultimately, through 
technology integration, the ExoForm process efectively produces 

sustainable solutions that work across body types, in any environ-
ment. This level of accessibility means that future devices can be 
tailored to ft users’ needs without leaving anyone behind. 
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