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A B S T R A C T   

Fused deposition modeling (FDM)-based 4D printing uses thermoplastics to produce artifacts and requires 
computational analysis to assist its design processes of complex geometries. Previously, finite element analysis 
(FEA) has been used to simulate 4D printing deformations, and its accuracy has been computationally and 
experimentally verified. However, using FEA also leads to several limitations, such as geometric approximation 
error and the computational time-cost due to the high degrees of freedom. To address these issues, this paper 
introduces isogeometric analysis (IGA) into the deformation simulations and propounds a composite design by 
hybridizing FEA and IGA elements to reduce the number of degrees of freedom while maintaining the simulation 
accuracy. Moreover, since the hybrid IGA-FEA method used for modeling 4D printing structure deformation 
excludes real-time interactivity, we develop a polycube-based random forest regressor machine learning (ML) 
model to learn the IGA-FEA-based structural mechanics simulations and provide fast deformation predictions. 
Given the input actuator block distribution and geometry configurations, our well-trained model can predict the 
residual stress-induced deformation behaviors of mesh-like thermoplastic composite structures. With an error 
less than 0.11% and computation speed 20 times faster than hybrid IGA-FEA simulations, our model can create 
real-time (0.93 s) and truthful (99.89% accuracy) results. The effectiveness of the proposed model is demon
strated with several complex design examples. We believe the presented workflow effectively combines IGA, 
FEA, ML, and 4D printing to provide a powerful computational tool that enriches the 4D printing design tool box, 
and brings huge application potentials.   

1. Introduction 

The concept of self-assembly or the term 4D printing from Tibbits 
(2014) takes advantage of shape memory materials (SMM). This concept 
is discussed in Ngo et al. (2018) and can be seen in post-processing 
actuation to deform the fabricated structure. 4D printing is an 
emerging technology with great potential. Leung et al. (2019) discusses 
the traditional fabrication limitation lifted by 4D printing. Deng and 
Chen (2015) shows the emerging potential of 4D printing through 
self-folding structures. Davis et al. (2016) demonstrates that 4D printed 
artifacts using intelligent materials can change shape in specific envi
ronment. Deng et al. (2017) shows that the shape changing process can 
also be accurately modelled. 4D printing was also adopted in bioprinting 
and food printing. An et al. (2016) presented a perspective on the forms 
of 4D bioprinting. Champeau et al. (2020) pointed out that hydrogel has 

the ability to modify its shape upon stimuli and can be used in bio
printing and food printing. 

Literature has demonstrated effective methods to predict the de
formations of designed 4D printing structures. Previously, Yu et al. 
(2020) established a physically-based finite element analysis (FEA) 
model to mechanically simulate the structure deformation. This enables 
the development of even more effective methods, such as SimuLearn 
shown in Yang et al. (2020). Yet, using finite element methods as a basis, 
these methods have limited accuracy due to geometric approximation 
errors. When handling models with complex geometries, the resulting 
complex mesh also has high degrees of freedom that burden the 
computation, leading to long simulation time. As an advanced finite 
element method, isogeometric analysis (IGA) introduced by Hughes 
et al. (2005) utilizes spline basis for both geometry and the solution 
space. It generates accurate simulation results while using fewer degrees 
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of freedom. In this paper, we propose to use a hybrid IGA-FEA method to 
greatly reduce the degrees of freedom while having a higher accuracy to 
simulate more complex 4D-printed geometries. We also develop a 
polycube-based random forest regressor to increase the accuracy of 
machine learning (ML) models to make more accurate predictions of the 
deformation of 4D printing structures. 

4D printing uses the same materials as 3D printing. Many types of 
thermoplastics, such as polyetheretherketone (PEEK) and poly
etherketoneketone (PEKK), are widely used in 3D printing to produce 
even high-end applications. Hu et al. (2019) explore 3D printing tech
niques with PEEK material, and Singh et al. (2019) investigate 3D 
printed PEKK material characterizations. Alternatively, PLA is another 
widely used thermoplastics in 3D printing. It is soft and easily deform
able when heated above the glass transition temperature (Tg). In this 
work, we use Carbon Fiber PLA (CFPLA) to maintain the advantages of 
flexibility and ease of processing while enhancing mechanical perfor
mance. The printed structures are reinforced along the fiber orienta
tions, delivering a high stiffness-to-weight ratio. Since the composite 
material is made of a PLA matrix, it also remains 3D printable but re
quires a higher extrusion temperature. Tian et al. (2016) shows that, 
using FDM techniques, CFPLA can be easily combined with PLA to form 
two-layer fiber-reinforced composites (FRCs) that have 4D printing 
characteristics, which are relatively more difficult to achieve with 
traditional manufacturing approaches. Specifically, the PLA in this FRC 
structure functions as the active deforming element while the CFPLA 
provides an enhanced structural rigidity. The deformation behaviors can 
also be controlled by modulating the thickness, printing speed, extrusion 
temperature, and aspect ratio of the PLA layers. For an in-depth expla
nation of these factors, please refer to Yu et al. (2020). 

FEA is commonly used to predict the deformation of 4D printed 
structures. Both material definitions and boundary conditions need to be 
modeled to enable these simulations. Grijpma and Pennings (1994) have 
characterized the properties of polymeric materials, including filamen
tous 3D printing materials like PLA and CFPLA. Soares et al. (2008) used 
an incompressible, isotropic neo-Hookean hyperelastic material to 
describe the mechanical response of the stents. The effect of static and 
dynamic loading on the degradation of PLA stent fibers was investigated 
in order to further define an incompressible hyperelastic material. Khan 
and El-Sayed (2013) combined Ogden’s compressible hyperelastic 
model and the generalized Maxwell’s model to obtain the linear visco
elastic behavior of biodegradable polymers. In Söntjens et al. (2012), a 
modified Eyring energy was used to define the viscoplastic behavior of 
PLA. Eswaran et al. (2011) further explored anisotropy in material 
modeling. In Bodaghi et al. (2019), a shape memory model was used to 
define the coefficients of thermal expansion for each print layer. In this 
paper, both PLA and CFPLA are tested with repeated dynamic me
chanical analysis (DMA), and specific models are subsequently proposed 
to characterize their material properties. We also consider the influence 
of residual stress and body force on the 4D-printed samples during the 
deformation process. 

However, despite that a physically-based FEA model was established 
in Yu et al. (2020) to predict the deformation of the designed printing 
structures, the required high degrees of freedom significantly slow down 
the computation. It is impossible to obtain prediction results in a 
real-time and interactive design process. In response, SimuLearn by 
Yang et al. (2020) used a data-driven approach that combines FEA and 
ML to create real-time (0.61 s) and truthful (97% accurate) 4D printed 
material simulators. In that paper, Graph Neural Network (GNN) was 
used as the ML model to speed up the simulation. Similar to the general 
GNN pipeline discussed in Zhou et al. (2020), the underlying topology of 
the grid structure can be abstracted into an undirected weight graph that 
is compatible with CNN used for velocity field prediction shown in Guo 
et al. (2016). The machine learning approach is also used for modeling 
non-linearity of 4D-printed soft pneumatic actuators shown in the re
view by Zolfagharian et al. (2020). In our paper, we developed an ML 
algorithm that combines polycube based hexahedral dominant mesh 

from Yu et al. (2021b), polycube based spline modeling from Yu et al. 
(2021a), and polycube maps from Tarini et al. (2004) to improve the 
deformation prediction accuracy for 4D printing structures with the help 
of random forest regressor. Compared to the GNN used in SimuLearn, 
the polycube based random forest regressor algorithm yields more ac
curate predictions because all of the structural information (e.g. the 
connection and the relative position of vertices) are contained in the 
polycube structure and the model has less noise. In addition, Simulearn 
uses multiple intermediate steps that lead to error propagation, while 
our algorithm does not have such problem. Zolfagharian et al. (2021) 
combined FEA and ML to predict the bending angle of a 4D-printed soft 
pneumatic actuator. Linear regression and artificial neural network 
were compared to determine the suitable machine learning model. Su 
et al. (2020) used hundreds of experiments to train the model and the 
prediction error is low. Yu et al. (2020) observed that the high compu
tational cost of data-driven simulation methods is largely caused by the 
high number of degrees of freedom used in FEA. To effectively lower 
computational costs without undermining simulation accuracy, we 
conducted structural mechanics simulations with hybrid IGA-FEA to 
improve simulation stability while obtaining accurate solutions with 
comparatively fewer degrees of freedom. Following this workflow, we 
generated large simulation datasets with physically-based hybrid 
IGA-FEA models for ML model training. 

This paper is laid out as follows. Section 2 provides an overview of 
our workflow. Section 3 discusses physics behind the deformation be
haviors, material properties, and material characterization. These 
techniques and data are then combined in Section 4 to introduce the IGA 
modeling and simulations, together with design results derived from the 
proposed workflow. Section 5 introduces the ML algorithm design and 
implementation details based on the proposed simulation method as a 
data set generator. Section 6 gives the comparison between the ML 
predictions and hybrid IGA-FEA simulation results. Finally, Section 7 
draws conclusions and points out potential improvement and future 
directions. 

2. Overview of the workflow 

In this paper, we propose a workflow to accurately simulate com
posite thermoplastic structures’ self-morphing behaviors. The proposed 
workflow consists of three major processes: material characterization, 
hybrid IGA-FEA modeling, and polycube-based random forest regressor 
ML learning. As shown in Fig. 1, depending on designated deformation 
behaviors, the workflow first splits the model into two types of com
ponents, PLA and CFPLA. Next, we perform volumetric truncated hier
archical B-splines (THB-splines) construction for the CFPLA components 
while using FEA elements for the PLA parts. The workflow uses the 
hexahedral control mesh of CFPLA to construct volumetric THB-splines. 
Through Bézier extraction, the Hex2Spline software (https://github. 
com/CMU-CBML/HexGen_Hex2Spline) exports spline information into 
the BEXT file for LS-DYNA. The workflow then builds hybrid models by 
combining the volumetric THB-splines (CFPLA) and finite elements 
(PLA). Hybrid IGA-FEA is performed with known material properties 
and predefined boundary conditions. For a detailed discussion of iso
geometric discretization, we refer readers to IGA implementation of 
polycube based hexhedral mesh generation and spline modeling in Yu 
et al. (2021b) and truncated hierarchical spline construction for IGA 
discussed in Wei et al. (2017). In the end, IGA-FEA-based structural 
mechanics simulation results are extracted to create a data set for 
training polycube-based random forest regressor ML models to create 
real-time and truthful morphing material simulators. 

Material characterization. The material properties of PLA and 
CFPLA are characterized through dynamic mechanical analyses with 
strip test samples under 80 ◦C – PLA’s glass transition temperature. We 
refer readers to Yu et al. (2020) for an in-depth discussion of the material 
properties and the precise material characterization of both PLA and 
CFPLA. 

Y. Yu et al.                                                                                                                                                                                                                                       
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Hybrid IGA-FEA modeling and simulation. The material definition 
for the hybrid IGA-FEA models is determined based on the material 
characterization results. The residual stress values are obtained through 
a shooting method similar to that in Yu et al. (2020). Finally, our IGA 
implementation includes both the residual stress-releasing and the body 
force-based creeping processes. 

Polycube-based random forest regressor. We develop a polycube- 
based random forest regressor ML model that learns from the hybrid 
IGA-FEA structural mechanics simulations and generate fast deforma
tion predictions. Given the input actuator block distributions and ge
ometry configurations, our well-trained model can predict the 
deformation 4D printed structures with low delay and error. 

3. Material characterization 

As it was done for the computations reported in Yu et al. (2020), the 

material properties are collected by performing uniaxial tensile tests on 
both PLA and CFPLA with the RSA-G2 equipment under the temperature 
of 80 ◦C (see Fig. 2(A)). The PLA material is purchased from Polymax, 
and the CFPLA material is purchased from Proto-Pasta, with an average 
carbon fiber length of less than 150 μm. 

Generally, the printing samples are embedded with residual stress 
along the printing path as the filament is being extruded from the nozzle. 
Therefore, the samples for material characterization are pre-processed 
by releasing their residual stress under 80 ◦C. The Poisson’s ratio of 
the materials can be obtained by measuring the dimensional change of a 
3D printed cubic sample before and after the uniaxial compression test. 
Cubic samples of size 5 mm × 5 mm × 5 mm is printed and subjected to a 
compressing load perpendicular to the top and bottom surfaces (see 
Fig. 2(B)). The obtained Poisson’s ratio for PLA is 0.419 ± 0.021 and 
0.359 ± 0.015 for CFPLA. These results are with an error bound calcu
lated from their 95% confidence interval of measurement. The Poisson’s 

Fig. 1. The workflow of 4D printing design based on IGA simulation: the structure of a block with FEA elements as PLA and IGA elements as CFPLA.  

Fig. 2. (A) DMA experiments equipment for material characterization; (B) DMA compression test with a cubic sample; and (C) the tensile test with a strip like sample.  

Y. Yu et al.                                                                                                                                                                                                                                       
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ratio for the computations are set to 0.4066 for PLA and 0.346 for 
CFPLA. The stress–strain curves are obtained by performing uniaxial 
tensile tests on a strip sample of size 5 mm × 1 mm × 0.5 mm (see Fig. 2 
(C)). We adopt an elastic constitutive model to describe their deforma
tion behaviors. The Young’s modulus for PLA is 1.28 MPa and 2.31 MPa 
for CFPLA. Both are determined by a least-squares fit based on the raw 
data obtained from the experiments. For the detailed testing procedures 
of each material property, the readers are referred to Yu et al. (2020). 

4. Hybrid modeling for additive manufacturing 

The mechanism behind the deformation of 4D printed PLA structures 
is the residual stress release in response to external stimulation (i.e., 
temperature above Tg). The application of FEA to predict the deforma
tion of 4D printing structures was reported in Yu et al. (2020). The re
sults have high simulation precision and provide a better understanding 
of how the designed structures will be affected by the residual stress and 
body force during the deformation process. Those simulation results can 
help designers predict the final configuration without having to physi
cally prototype. However, there are two major limitations. The first one 
is the simulation speed: considering that designers often need to iterate 
their designs several times before reaching the final product, the 
time-consuming FEA-based simulators will not be practical in this sce
nario. Along this line, ML was used in Yang et al. (2020) to speed up 4D 
printing simulations by three-orders of magnitudes while maintaining 
high accuracy, but the reported method still requires computing de
formations with FEA in advance to generate datasets. The other limi
tation is the geometry limitation. The 4D printed shoe supporter in Yu 
et al. (2020) and 4D printed aggregated table in Yang et al. (2020) are 
simple geometries, which only consist of bending units. However, more 
complex geometric features are also desirable in certain scenarios. 
Different types of elements, such as linear tetrahedral and prism ele
ments, are also needed for discretization. Yet, with a more complex 
mesh, the computational cost also increases accordingly. Our idea is to 
introduce IGA into the simulation to increase the computational effi
ciency as IGA can deliver stable and accurate solutions with fewer de
grees of freedom. To support even more complex geometries, we use 
hex-dominant meshes with the hybrid IGA-FEA method. 

In this section, we use a bending unit to explain how to construct a 
multi-patch solid with TH-spline3D for CFPLA (non-degenerated hex 
domains) and FEA solids for PLA (degenerated and non-degenerated hex 
domains). Note that Bézier elements cannot be applied with the initial 
residual stress in LS-DYNA. The bending unit is the fundamental struc
tural unit. It consists of two different blocks – the top actuator block and 
the bottom constraint block. First, we generate the hex-dominant mesh 
of this model with hex, tetrahedra, and prism elements as shown in Fig. 3 
(A). Then, with the material definition and boundary condition settings, 
including the fixed region, the body force and the division of actuator 
and constraint components, we perform the structural mechanics 
simulation and predict the deformation of this geometry as shown in 
Fig. 3(B). 

We evaluated two design examples completed using the 

aforementioned process. With our extended workflow, we do not need to 
use all-hex elements to align geometry features such as fillets, sharp 
corners with small angles, or prism-like components, which may lead to 
poor-quality elements. The first simulation example is the top piece of a 
shoe supporter similar to that shown in Yu et al. (2020). However, the 
edges of the structure were designed with a fillet to avoid having sharp 
angles that may harm the wearer. 

The structural mechanics simulation results using the hybrid IGA- 
FEA is shown in Fig. 4(B). The second simulation example is the top 
piece of the lamp cover from Yu et al. (2020); see the mesh structure and 
the structural mechanics simulation result using hybrid IGA-FEA in 
Fig. 5. 

We also validated the applicability of the IGA-FEA method in 3D 
printing. We take a compliant mechanism model (Fig. 6(A)) as an 
example. The compliant mechanism model transfers forces and motions 
along the axial directions of the flexural rods, but the rods would bend 
through elastic deformations when subjected to non-axial loads. The 
structure is first simplified to end-to-end transmission. We use TH- 
spline3D for the rod domain (middle section of the model) and use 
FEA solids for the two ends. Dirichlet boundary conditions are applied to 
the two ends. The final structural mechanics simulation result is pre
sented in Fig. 6(B). The results validate that we can apply hybrid IGA- 
FEA and hex-dominant meshes to the compliant mechanism model 
from 3D printing. 

5. Hybrid IGA-FEA-based data-driven simulation 

In the previous section, we introduce structural mechanics simula
tions using a hybrid IGA-FEA method, which can yield stable and ac
curate solutions with fewer degrees of freedom. However, it is still 
difficult to predict deformations in real time. To solve this problem, we 
use our hybrid IGA-FEA implementation to generate datasets for ML 
model training to further speed up simulations while maintaining an on- 
par accuracy. 

5.1. Polycube-based data generation 

To cover the design space of the deforming grid structures, we used a 
parametric script to generate thousands of similar geometries that have 
differing geometric parameters. Specifically, the script randomizes the 
joint locations, and vertices along the edges are linearly interpolated 
from the randomized joint coordinates. The resulting geometries are 
topologically equivalent to the initial geometry in Fig. 7(A), which 
consists of multiple non-degenerated and degenerated cubes. The non- 
degenerated cubes are modeled with hex elements, whereas the 
degenerated cubes constructed with prisms and tetrahedrons. The pol
ycube structure has 1108 vertices and 666 elements in total. Next, we 
build these designs into hybrid IGA-FEA models using the polycube- 
based and TH-spline3D method, and deformation models were gener
ated and simulated (see Fig. 7(B)). Due to geometric differences, the 
simulated structures had varying shapes and deformation behaviors. 

Fig. 3. (A) The hex-dominant mesh of the beam model; and (B) deformation for bending unit structural mechanics computation.  

Y. Yu et al.                                                                                                                                                                                                                                       
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Fig. 4. The structural mechanics simulation of the top piece of the shoe supporter. (A) The structure of the mesh; and (B) structural mechanic simulation result.  

Fig. 5. The structural mechanics simulation of the top piece of the lamp cover. (A) The structure of the mesh; and (B) structural mechanic simulation result.  

Fig. 6. The structural mechanics simulation of the compliant mechanism model. (A) The structure of the mesh; and (B) structural mechanic simulation result.  

Fig. 7. (A) Polycube structure of all designed printing structure; and (B) samples of the geometry generated by using polycube-based method.  

Y. Yu et al.                                                                                                                                                                                                                                       
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5.2. Polycube-based random forest regressor 

Completed hybrid IGA-FEA results are used to extract features for 
creating ML training data. For each prediction, the deformation result is 
described by the vertex coordinates. To predict deformation of the 
structures, we developed a ML algorithm and compared its accuracy and 
performance with the IGA-FEA model. Fig. 8 illustrates the structure of 
the developed ML algorithm. We take inspiration from the polycube 
method and introduce it into ML. Both input and output files are 
calculated as the displacement with respect to the polycube geometry. 
For example, the first block of the input feature data is ΔX, which is a 
m × n′ matrix, where m is the total number of simulations of the training 
data and n′ is the number of coordinates features in x direction (see 
Fig. 8). In the block, each number is calculated with the equation: 
ΔX = Xg − Xp, where Xg is the coordinate of one vertex in x direction and 
Xp is the coordinate of one vertex of polycube geometry in x direction. 
Take the output as an example, the first block of output data is ΔX′, 
which is still a m × n′ matrix. In this block, each number is calculated 
with the equation: ΔX′

= X′

g − Xp, where X′

g is the coordinate of one 
vertex of deformed structure in x direction and Xp is the coordinate of 
one vertex of polycube geometry in x direction. The multiple random 
forest regressors are trained to compute the deformation. It consists of 
3324 individual random forest regressors. Each regressor is responsible 
for learning and predicting the displacement at a specific vertex based 
on a given initial geometry. After learning from all the simulation data, 
predictions of displacement value from 3324 random forest regressors 
are combined to create a 2 × 2 mesh grid. The input data for random 
forest regressor algorithm is a m × n matrix, where m is the total number 
of simulations of the training data and n is the number of all features. 
Each row starts with 3324 initial coordinate information from 1108 
vertices or control points, followed by initial residual stress information. 
The output of each regressor is one displacement value at a specific 
vertex based on the initial geometry. 

5.3. ML results and performance 

The performance of the random forest regressor algorithm was 
evaluated using four metrics: mean square error (MSE), mean absolute 
error (MAE), coefficient of determination (R2) based on Pedregosa et al. 
(2011), and the mean relative error (MRE). For the random forest re
gressor, 28,125 datasets are split into training and testing data (75/25). 

Deformations predicted by the 3324 random forest regressor models are 
compared with their corresponding displacement value in the testing 
data. The ranges of these four metrics are shown in Table 1. Note that the 
variance of the design parameters bounds the generalization of the ML 
model. If the ML model is presented with out-of-range grid design pa
rameters, it is likely to produce less accurate results. 

6. ML driven forward design examples 

In this section, we demonstrate the broad spectrum of forward design 
possibilities enabled by the proposed high-accuracy workflow for ther
moplastic composites using three forward design examples. 

Arm band is the first design implementation of our developed for
ward design workflow (see Fig. 9(B)). With fast and accurate prediction, 
our workflow is especially desirable in situations that requires custom
ization, such as personal healthcare equipment. Fig. 9(A) and (B) shows 
that we can design and combine multiple 2 × 2 grid structures to form a 
simple arm band structure. The grids had filleted edges to prevent 
harming the wearer. This combined grid strategy opens up the range of 
potential applications achievable with the workflow. Using our work
flow, this design can be easily changed in real time to customize for 
different scenarios. 

Fig. 9(C) shows the prediction error of the arm band design. To 
quantitatively measure the accuracy of our model, we compare the 
displacement differences between hybrid IGA-FEA and ML results. We 
perform mean relative error (MRE) analysis. The MRE for the arm band 
design is 0.012%, as shown in Table 2. Compared to hybrid IGA-FEA 
simulation workflow that takes 19.3 s to complete, our ML driven 
workflow takes only 0.94 s, approximately 20 times faster. 

Lamp cover is the second design of the workflow; see Fig. 10(A) and 
(B). This design leverages the speed and accuracy of the simulator to 
iteratively bring the gaps between modules as close as possible, which 

Fig. 8. ML model structure of random forest regressors.  

Table 1 
Comparison between polycube-based random forest regressor and hybrid IGA- 
FEA.  

Metrics Minimum Maximum 

MSE (mm) 0.0002 0.0354 
MAE (mm) 0.00775 0.0873 
R2 0.999916 0.9999995 
MRE (%) 0.00899 0.10785  

Y. Yu et al.                                                                                                                                                                                                                                       
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would have been impossible or impractical without fast and accurate 
simulator. In this example, multiple 2 × 2 grids are designed to connect 
and form a complex 3D surface, mimicking a lamp cover. 

Fig. 10(C) shows the prediction comparison between hybrid IGA-FEA 

simulation and ML prediction for lamp cover design. The MRE for lamp 
cover is measured to be 0.037% and 0.019%. For each 2 × 2 grid, the 
hybrid IGA-FEA simulation time for top and bottom section of lamp 
cover are 17 and 19.3 s, while our ML workflow takes only 0.94 and 
0.92 s respectively, approximately 19.5 times faster than the hybrid IGA- 
FEA method. 

Aggregation sculpture is the third design using our workflow. We 
take inspiration from the design in Yang et al. (2020) to further explore 
the potential complex structures enable by 4D printing and our hybrid 
workflow. This design starts with a pair of 2 × 2 grids (see Fig. 11(A)). 
Then, multiple grids are connected to form stack-able rings (see Fig. 11 
(C)). By stacking multiple rings with a rotational offset, we can achieve 
an aggregation structure as shown in Fig. 11(D). 

Fig. 11(B) shows the comparison between hybrid IGA-FEA simula
tion and ML prediction for aggregated sculpture. The MRE for this 

Fig. 9. (A) 2 × 2 grid in arm band design; (B) arm band; and (C) error distribution of arm band design between prediction and ground truth.  

Table 2 
Statistics of all tested design examples.  

Model name IGA computation time 
(s) 

ML prediction time 
(s) 

MRE (%) 

Arm band 19.3 0.94 0.012 
Lamp cover 17.0 &19.3 0.94 &0.92 0.037 

&0.019 
Aggregation 

sculpture 
15.0 0.93 0.07  

Fig. 10. (A) Lamp cover top view; (B) lamp cover with a light source at the center; and (C) error distribution of lamp cover design between prediction and 
ground truth. 

Y. Yu et al.                                                                                                                                                                                                                                       



Journal of Materials Processing Tech. 302 (2022) 117497

8

design is 0.07%. The hybrid IGA-FEA simulation takes 15 s, while our 
ML workflow only takes 0.93 s, approximately 16.1 times faster. 

7. Conclusion and future work 

In this paper, we established a computational workflow that uses 
hex-dominant meshes, hybrid IGA-FEA, and polycube-based random 
forest regressor to predict the residual stress-induced morphing defor
mation behaviors of mesh-like thermoplastic composite structures. By 
introducing IGA into the deformation simulations and putting forward a 
composite design by hybridizing FEA and IGA elements, we successfully 
reduce the degrees of freedom while maintaining the simulation accu
racy. This method also significantly speeds up the training dataset 
generation process for ML. Based on analysis conducted on the devel
oped ML algorithms that use polycube-based method and random forest 
regressors, our ML algorithm is vastly more efficient and much faster 
than hybrid IGA-FEA simulation. Our polycube-based ML algorithm also 
yields good prediction accuracy on deformation. While our workflow is 
adapted to FDM-based 4D printing, this workflow is also applicable to 
other 3D printing methods. For example, our workflow can be adapted 
to particle-based selective laser sintering and selective laser melting 
where the printing process produces the residual stress. Such residual 
stress issue was investigated by Mercelis and Kruth (2006) and Meier 
et al. (2017). In response to external stimulation, the residual stress 
release can cause the deformation of 4D printed structures. A limitation 
of our polycube-based random forest regressors algorithm is that the 
models trained on 2 × 2 mesh grid is not generalizable to other topol
ogies. For example, it cannot handle 2 × 3 grid structures. However, it is 
possible to accommodate these topologies by scaling the polycube 
models. In that case, retraining is needed if a new topology is intro
duced. In the future, a data-driven method that extends the geometry 

model to even more complex mesh structures, instead of only a single 
2 × 2 mesh grid, also worthy additional exploration and can be used to 
further speed up the simulation. One challenge is reversibility. Appli
cation of reversible shape memory to 4D Printing has been investigated 
by Lee et al. (2019), which has led to significant advances in our un
derstanding of how the heating and cooling as the stimuli to enable 
reversibility. In this paper, we use PLA and CFPLA as printing material. 
The irreversible was verified experimentally. However, if we use 
reversible shape memory, such as hydrogel, we can achieve reversibility 
by using a combination of stimuli proposed by Lee et al. (2020). A 
sequential workflow can be developed to achieve accurate simulation 
results with reversible actuation. 
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Fig. 11. (A) One aggregation sculpture unit; (B) error distribution of aggregated sculpture design between prediction and ground truth; (C) one ring of aggregation 
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