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Stimuli-responsive hydrogels are candidate building blocks for soft robotic applications
due to many of their unique properties, including tunable mechanical properties and
biocompatibility. Over the past decade, there has been significant progress in developing
soft and biohybrid actuators using naturally occurring and synthetic hydrogels to address
the increasing demands for machines capable of interacting with fragile biological systems.
Recent advancements in three-dimensional (3D) printing technology, either as a
standalone manufacturing process or integrated with traditional fabrication techniques,
have enabled the development of hydrogel-based actuators with on-demand geometry
and actuation modalities. This mini-review surveys existing research efforts to inspire the
development of novel fabrication techniques using hydrogel building blocks and identify
potential future directions. In this article, existing 3D fabrication techniques for hydrogel
actuators are first examined. Next, existing actuation mechanisms, including pneumatic,
hydraulic, ionic, dehydration-rehydration, and cell-powered actuation, are reviewed with
their benefits and limitations discussed. Subsequently, the applications of hydrogel-based
actuators, including compliant handling of fragile items, micro-swimmers, wearable
devices, and origami structures, are described. Finally, challenges in fabricating
functional actuators using existing techniques are discussed.
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1 INTRODUCTION

Recent advances in 3D printing have enabled the production of customizable hydrogel-based
actuators with a variety of applications. Hydrogels are hydrophilic and porous crosslinked polymer
networks whose mechanical, chemical, and stimulation-responsive properties can be tuned based on
composition and manufacturing processes (Shi et al., 2019). Such properties enable applications of
hydrogels in several domains, including tissue engineering (Billiet et al., 2012), drug delivery (Li and
Mooney, 2016), wound dressings (Varaprasad et al., 2020), and soft robotics (Lee et al., 2020; Wallin
et al., 2018). Recent reviews are available on the use of hydrogels in biomedical applications (Banerjee
et al., 2018; Champeau et al., 2020), polymeric shape memory hydrogels and hydrogel actuators
(Shang et al., 2019), and biomimetic hydrogel actuators (Le et al., 2019). Readers interested in

Edited by:
Stefano Palagi,

Sant’Anna School of Advanced
Studies, Italy

Reviewed by:
Mahmut Selman Sakar,

École Polytechnique Fédérale de
Lausanne, Switzerland

Ivan Rehor,
University of Chemistry and

Technology in Prague, Czechia

*Correspondence:
Victoria Webster-Wood

vwebster@andrew.cmu.edu

Specialty section:
This article was submitted to

Soft Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 27 February 2021
Accepted: 14 April 2021
Published: 29 April 2021

Citation:
Sun W, Schaffer S, Dai K, Yao L,
Feinberg A and Webster-Wood V

(2021) 3D Printing Hydrogel-Based
Soft and Biohybrid Actuators: A Mini-

Review on Fabrication Techniques,
Applications, and Challenges.

Front. Robot. AI 8:673533.
doi: 10.3389/frobt.2021.673533

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6735331

MINI REVIEW
published: 29 April 2021

doi: 10.3389/frobt.2021.673533

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.673533&domain=pdf&date_stamp=2021-04-29
https://www.frontiersin.org/articles/10.3389/frobt.2021.673533/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.673533/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.673533/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.673533/full
http://creativecommons.org/licenses/by/4.0/
mailto:vwebster@andrew.cmu.edu
https://doi.org/10.3389/frobt.2021.673533
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.673533


comprehensive reviews on hydrogel-based 3D printing for
biomedical applications can refer to (Li et al., 2020). However,
a focused synopsis of the fabrication techniques and challenges
for 3D printing hydrogel-based actuators has not been previously
reported.

To address this gap, this mini-review presents recent
advancements in 3D printing for fabricating hydrogel
actuators, either as a standalone manufacturing process or
integrated with traditional fabrication techniques, where
actuators are defined as any components that perform defined
movements or geometric changes. Here, we present characteristic
examples of existing 3D printing techniques for hydrogel actuator
fabrication based on their roles in the fabrication process: direct
3D printing; mixed-mode 3D printing, where 3D printed
hydrogel structures undergo additional post-printing steps;
and the use of 3D printing to fabricate intermediate tools.
Additionally, we discuss the strengths and limitations of 3D
printed hydrogel actuators based on their actuation modalities.
Applications of 3D printed hydrogel actuators are subsequently
surveyed. Through this discussion, we provide a focused survey
on the challenges and limitations in fabricating hydrogel
actuators using existing 3D printing techniques to inspire
future hydrogel fabrication advances that improve the
performance of hydrogel-based actuators.

2 3D PRINTING TECHNIQUES FOR
HYDROGEL ACTUATOR FABRICATION

3D printing enables hydrogel actuator fabrication either through
direct printing of actuator structures, mixed-mode printing of
hydrogels with other functional materials, or through printing
intermediate tools. Several direct 3D printing technologies have
emerged including inkjet-based, laser-based, and extrusion-based
approaches. Other fabrication techniques can be added to direct
printing to create mixed-mode fabrication platforms, such as
combining 3D printing and hydrogel electrospinning.
Additionally, 3D printing can be used to rapid prototype
molds for casting hydrogels. Each approach has challenges and
advantages that should be considered when selecting fabrication
techniques.

2.1 Direct 3D Printing of Hydrogel Actuators
2.1.1 Inkjet-Based 3D Printing
Inkjet-based hydrogel 3D printing uses computer-controlled
layer-by-layer deposition of droplets onto a substrate
(Figure 1A1) (Axpe and Oyen, 2016). A variety of shape
changing hydrogel actuators that respond to external stimuli
have been inkjet printed (Peng and Wang, 2018). For example,
utilizing the swelling response of inkjet printed UV-curable
polyacrylated monomers that undergo layer-by-layer UV-
polymerization, water-swellable joints can be fabricated to
enable modular 4D self-reconfiguration following printing
(Raviv et al,. 2014). Alternatively, inkjet printers can be used
to introduce reactive inks into hydrogel systems to induce locally
active regions. For example, metal ion ink to induce anisotropic
crosslinking density and controlled deformation during swelling

(Figure 1A2) (Peng et al., 2017), and reactive catalyst ink made of
bis(2,2′-bipyridine)-4′-methyl-4-carboxybipyridine-ruthenium
N-succinimidyl ester-bis(hexafluorophosphate) (Ru (sbpy)) to
create user-defined reactive regions that experience oxidation
state-dependent swelling ratio (Kramb et al., 2014).

Hydrogels with low viscosity of <10 mPa.s (Axpe and Oyen,
2016) are typically used in inkjet printing and the resulting
hydrogel actuators have low structural integrity
(Zolfagharian et al., 2017a). The aforementioned techniques
produced relatively thin and simple hydrogel structures.
Fabricating thick hydrogel actuators using inkjet printing
remains a challenge. To overcome this limitation,
reinforcing material, such as collagen sheets or agarose
rods, can be printed as support materials before depositing
hydrogel layers (Jakab et al., 2010). Recent advancement in
freeform liquid support-based inkjet printing techniques may
further lift the geometric constraints on 3D inkjet printed
hydrogel actuators. For example, (Christensen et al., 2015)
fabricated vascular-like structures with overhanging features
by directly inkjet printing hydrogel into a calcium chloride
solution, which serves as both a crosslinker and support.

2.1.2 Laser-Based 3D Printing
Hydrogel actuators with 2D geometry can be fabricated with
classic photolithography that uses photomasks for geometry
control, such as stop-flow lithography (Rehor et al., 2020).
Hydrogel structures with complex 3D geometry can be made
via laser-based 3D printing techniques from three major
categories: laser-induced forward transfer, which uses laser
energy to discharge hydrogel droplets from a donor layer onto
a substrate (Guillemot et al., 2011); two photon-polymerization
(2PP) (Figure 1B1) which initiates hydrogel polymerization
through irradiation with near-infrared laser pulses (Billiet
et al., 2012); and stereolithography (SLA) (Figure 1C1), which
selectively crosslink photo-sensitive monomer resin using
scanning UV laser beams (Cvetkovic et al., 2014). A variation
of SLA is digital light processing (DLP), which projects the entire
image of a layer on the resin using UV (or visible) light from a
digital projector (Soman et al., 2013). High resolution SLA
provides a variety of tunable fabrication parameters and can
be used to fabricate hydrogel actuators with controllable motion
through asymmetry. Specifically, anisotropic swelling behavior
has been encoded by asymmetric high surface area patterning,
asymmetric crosslinking density, and asymmetric chemical
composition by tuning SLA parameters (Odent et al., 2019),
(Figures 1C2,3). Compared with other hydrogel 3D printing
techniques, 2PP shows exceptional spatial resolution and is
advantageous for building miniature actuators and robots. For
example, (Xiong et al., 2011) fabricated ion-responsive hydrogel
microcantilever actuators with swift motion (millisecond
response time) and small size (10 μm cantilever length) using
2PP (Figure 1B2).

Laser-based hydrogel 3D printing techniques show great
spatial resolution (up to submicron resolution (Ovsianikov
et al., 2010; Xing et al., 2015). However, they are typically
subject to high costs due to expensive hardware and software
and the limitation of printing small features.
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2.1.3 Extrusion-Based 3D Printing
Extrusion-based 3D printing dispenses hydrogel filament
through a nozzle onto a substrate using a piston, pneumatic
pump or screw (Figure 1D1) (Li et al., 2020). With a large
selection of open-source and low-cost fabrication hardware and
software, extrusion-based 3D printing is considered attractive for
hydrogel processing (Li et al., 2020), andmany hydrogel actuators
fabricated with extrusion printing have been reported. Using a
pneumatically driven fluid dispenser, (Tyagi et al., 2020)

fabricated a microactuator where an active hydrogel layer that
swells upon hydration was bonded with a passive gel layer to
create a cantilever structure with humidity-induced bending
capability (Figures 1D2–4). With continuous hydrogel
filament feeding, extrusion-based 3D printing provides a
convenient way to create anisotropic hydrogel features that
facilitate directional actuation. For example, (Gladman et al.,
2016) printed composite hydrogel actuators with anisotropic
swelling behavior by aligning cellulose fibrils along predefined

FIGURE 1 | Examples of hydrogel actuators fabricated with (A) inkjet printing, (B) two-photon polymerization printing (2PP), (C) stereolithography (SLA), (D)
extrusion-based printing, (E) embedded printing, and (F,G) mixed-mode 3D printing. (A1) The inkjet printing process. (A2) Hydrogel actuators with inkjet printed
patterns to achieve controlled 3D deformation. Adapted from (Peng and Wang 2018) ©2018 John Wiley and Sons, Inc. (B1) A typical 2PP process induced by a near-
infrared femtosecond laser. Reprinted from (Xing et al., 2015) ©2015 the Royal Society of Chemistry. (B2) 2PP printed hydrogel actuator in water (top) and in 1 M
NaCl solution (bottom). Reprinted from (Xiong et al., 2011) ©2011 the Royal Society of Chemistry (C1) The SLA process (C2) 3D model of an SLA printed hydrogel
actuator with varying surface area to volume ratio. (C3) Osmotically driven actuation of the actuator. Adapted from (Odent et al., 2019) ©2019 the Royal Society of
Chemistry. (D1) Common extrusion-based printing process. Reprinted from (Malda et al., 2013) ©2013 John Wiley and Sons, Inc. (D2) A bending actuator with 3D
printed humidity-responsive hydrogel layer (blue) with water vapor induced actuation (D3-4). Adapted from (Tyagi et al., 2020) ©2020 The Authors under the CC-BY 4.0
license. (E1) Embedded printing process where the thermo-responsive support bath exhibits Bingham plastic properties during printing and melt at raised temperature
for printed component release. Reprinted from (Hinton et al., 2015) ©2015 The Authors under the CC-BY 4.0 license (E2) Fabrication process of an embedded printed
human cardiac ventricle model using collagen and cell ink. (E3) (left) Point stimulation of the model stained with calcium-sensitive dye. (right) Color-coded calcium
mapping of a subregion showing anisotropic calcium wave propagation during stimulated contraction. Adapted from (Lee et al., 2019) ©2019 AAAS. (F) Fabrication of a
3D printed microfish with encapsulated magnetic nanoparticles for motion control and catalytic Pt nanoparticles for self-propulsion powered by H2O2 decomposition.
Adapted from (Zhu et al., 2015) ©2015 John Wiley and Sons, Inc. (G1) A hydrogel actuator fabricated with hydrogel electrospinning and 3D printing. (G2) The actuator
exhibits temperature-dependent curvature. Adapted from (Chen et al., 2018) ©2018 John Wiley and Sons, Inc. All figures are used with permission.
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printing pathways. (Cheng et al., 2019) demonstrated the
versatility of extrusion-based 3D printing with modified
hydrogels by fabricating fluidic and stimulus-activated
actuators, including an artificial tendril with phototropic motion.

Extrusion-based 3D printing is a cost-effective hydrogel
fabrication technique that is compatible with hydrogel ink
with viscosities ranging from 30 to 6 · 107 mPa · s (Kyle et al.,
2017). Large hydrogel constructs can be printed with moderate
spatial resolution. With recent advances in support material for
embedded 3D printing, the spatial resolution of extrusion based
3D printed hydrogel actuators can be further improved (see
Section 2.1.4).

2.1.4 Embedded 3D Printing
3D printing overhanging features without supporting structures
often leads to low print fidelity due to unwanted deformation. This
problem is more pronounced for hydrogel actuator fabrication
because many of the inks are extremely soft, e.g., alginate and
collagen, and can not even support their own weight. Recently,
several embedded 3D printing techniques have been proposed to
resolve the aforementioned issue by printing modified inks into a
support bath (Zhang et al., 2021; Mirdamadi et al., 2020). Notably,
(Hinton et al., 2015) printed 3D structures by embedding printed
hydrogels within a gelatin-based thermoreversible bi-phase support
material, which provides support during printing and liquefies when
the temperature is raised post-printing for part retrieval
(Figure 1E1), coined Freeform Reversible Embedding of
Suspended Hydrogels (FRESH). Using FRESH 2.0 with improved
spatial resolution (20 μm filament resolution), (Lee et al., 2019)
printed cardiac ventricles with synchronized contractions using
human cardiomyocytes and collagen (Figures 1E2,3).

2.2 Mixed-Mode 3D Printing and 3D Printing
of Intermediate Tools
Combining 3D printing with other fabrication techniques
(mixed-mode), allows 3D printed hydrogel actuator fabrication
with additional functionality. For example, (Zhu et al., 2015)
demonstrated a chemically powered and magnetically guided
microfish, where the hydrogel body was fabricated via UV
photolithography. Catalytic Pt nanoparticles were then
encapsulated at the tail via crosslinking Pt-doped resin to
induce self-propulsion via decomposition of H2O2. Fe3O4

nanoparticles were loaded into the head with a similar method
for magnetic control (Figure 1F). In another example of mixed-
mode fabrication, (Chen et al., 2018) combined hydrogel
electrospinning and extrusion-based hydrogel printing to
fabricate actuators with temperature-responsive bending
behavior induced by the difference in properties of electrospun
and 3D printed hydrogels (Figure 1G). (Cvetkovic et al., 2014)
demonstrated a biobot whose hydrogel body was SLA 3D printed
and actuated by a strip of engineered mammalian skeletal muscle
cast over the printed hydrogel body.

In addition to direct 3Dprinting, hydrogel actuators can bemade
with methods that indirectly involve 3D printing. For example, (Yuk
et al., 2017) fabricated hydraulic hydrogel actuators whose bodies
were made by casting within 3D printed molds. In addition to mold

fabrication for hydrogel casting, components of hydrogel actuators
have been 3D printed using non-hydrogel materials with desired
properties. For example, (Mestre et al., 2019) fabricated a biohybrid
actuator using a 3D printed PDMS skeleton that serves as an
actuation force indicator and structural support. Combining 3D
printing with other fabrication techniques facilitates rapid
prototyping of actuators (Yuk et al., 2017) and integration of
different materials that enable new actuation modalities (Zhu
et al., 2015). However, added fabrication complexity can incur
challenges, such as the necessity to switch between resins with
different additives (Zhu et al., 2015) and the need to bond cast
components (Yuk et al., 2017).

3 ACTUATION MODALITIES

Hydrogel actuators commonly rely on heterogeneous structure
and/or stimuli to generate meaningful movement (Zhang and
Khademhosseini, 2017). Heterogeneous structure may be
generated from rational design of hydrogel geometry or from
material property gradients created by dopants within the
hydrogel (Odent et al., 2019). Heterogeneous stimulation may
come from external humidity or pH gradients or optical, thermal,
or electrical stimuli (Zolfagharian et al., 2017a). Actuation of
these hydrogels occurs due to thermodynamic imbalance between
osmosis and hydrophobicity of hydrogel polymers which causes
swelling and de-swelling (Peng andWang, 2018). However, other
actuation modalities such as cell-powered, pneumatic/hydraulic,
acoustic, and magnetic actuation do not typically rely on swelling
behavior. Readers interested in a further review of hydrogel-based
actuation mechanisms, including actuators that have not been 3D
printed or fabricated with 3D printed tooling, may also be
interested in (Erol et al., 2019).

3.1 Osmotic Actuation (pH, Humidity, Ionic,
Thermal, Optical)
Many of the actuation methods of stimuli-responsive hydrogels
rely on structural swelling and de-swelling driven by osmotic-
pressure changes in response to external stimuli such as pH
(Nadgorny et al., 2016), humidity, temperature, electric field, and
optical lasers (Yuk et al., 2017). These actuation methods are
often used in 4D printing, where hydrogel structures deform over
time from their original geometry into new configurations with or
without further active actuation (Adam et al., 2021; Momeni
et al., 2017; Spiegel et al., 2020). To mitigate the heavy
computational costs of simulating 4D printed configurations,
(Huang et al., 2020) proposed a modular design of shape-
morphing structures with discretized building blocks using a
pH-responsive bilayer hydrogel (Jin et al., 2020). For actuating
hydrogels using electric field or electrolytes, hydrogel polymers
can be created with ionic dopants or precursors (Zolfagharian
et al., 2017b). Alternatively, hydrogels can also be actuated
without external electric field by changing their chemical
environment and building multi-layer hydrogels where each
layer has a different swelling response to an electrolyte or
chemical solution (Zheng et al., 2018).
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Hydration and dehydration cycles can drive structural
expansion and contraction of hydrogel actuators due to water
absorption from external humidity or immersion in water. This
actuation modality is often used to create bilayer and trilayer
bending hydrogel actuators. For example, (Rivera et al., 2020)
fabricated a hydrogel-textile bilayer composite by 3D printing
κ-carrageenan, a nontoxic hydrogel derived from red seaweed
that swells in response to water, onto textile substrates. By tuning
hydrogel patterns and concentrations, smart textile actuators
with programmed actuation states were achieved. (Wang et al.,
2017) 3D printed a B. subtilis cell-agar hydrogel mixture that
experienced volume change during hydration and dehydration by
utilizing cells’ hygromorphic phenomenon, where a cell’s size can
change by 50% when varying the relative humidity. Similarly,
(Yao et al., 2015) printed natto cell-water solution onto humidity-
inert textile substrates to create smart wearables that open up
ventilation holes in response to raised skin temperature. In
addition, (Lv et al., 2018) used 2PP to create hydrogels with
microstructure arrays of various geometries to mimic stomata
found in plants. Hygroscopic swelling and deswelling causes the
stomata microstructures to close and open.

Temperature changes and temperature gradients can be used
to actuate hydrogels with heterogeneous lower or upper critical
solution temperature (LCST, UCST) (Hua et al., 2019) and
hydrogels with temperature-dependent moisture content
(Hamedi et al., 2016). (Odent et al., 2019) used SLA to 3D
print multi-layer hydrogel actuators that opened and closed
between 25–50°C, as well as another hydrogel actuator that
was controlled by changes in pH. (Lin et al., 2020) 3D printed
a bilayer hydrogel actuator with α-cyclodextrin polyrotaxane that
both deflected and changed opacity when subjected to
temperature changes.

Optical lasers can also be used to control hydrogel actuators,
commonly with a photothermal process using photoresponsive
hydrogels and near-infrared light (Watanabe et al., 2002; Hippler
et al., 2019). With embedded light-absorbing particles, such as
graphene oxide nanoparticles (Zhao et al., 2018; Breuer et al.,
2019), copper sulfide nanoparticles (Pan et al., 2021), and gold
nanorods (Nishiguchi et al., 2020), the photothermal process
converts light energy to heat and follows the same LCST or UCST
process as thermally responsive hydrogel actuators, but may be
more precisely controlled with optical stimuli (Zheng et al., 2020).
The swelling properties of optically stimulated, thermo-
responsive hydrogels can be tuned by varying printing density
to achieve ultrafast actuation (Nishiguchi et al., 2020).

3.2 Cell-Powered Actuation
Hydrogels are among the most common scaffold material in
tissue engineering (Mantha et al., 2019). As a consequence, with
the growth of biohybrid robotics research over the past decades
(Webster-Wood et al., 2017), numerous cell-powered, hydrogel
actuators have been developed. Biohybrid devices rely on
contraction of engineered or explanted tissue to drive
actuation (Ricotti et al., 2017; Webster-Wood et al., 2017; Sun
et al., 2020). Cells can be cultured asmonolayers to drive bending-
based actuation of bilayer cantilevers (Marzban and Yuan, 2016;
Chan et al., 2012; Ricotti and Fujie, 2017), or can be cultured as

three dimensional tissues using casting (Cvetkovic et al., 2014;
Raman et al., 2016) or 3D printing (Mestre et al., 2019). Although
many example of mobile hydrogel devices are now available in the
literature (Ricotti et al., 2017; Webster-Wood et al., 2017; Sun
et al., 2020; Morimoto and Takeuchi, 2020), challenges remain
both in identification of optimal hydrogel composition and
stiffness, and in scaling up cell-powered actuators for macro-
scale applications (Won et al., 2020). Despite these challenges,
cell-powered actuation of hydrogels posses many unique
advantages through the inclusion of material that is self-
healing, renewable, and adaptable.

3.3 Pneumatic/Hydraulic Actuation
Pneumatic and hydraulic actuation is based on pressure gradient
across an actuator membrane induced by a gas or fluid.
Compared to hydrogel actuators with osmotic swelling/
de-swelling-based actuation and cell-powered actuation,
hydraulically driven hydrogel actuators are less common
but show higher actuation force and/or speed (Yuk et al.,
2017). These actuators have direct applications in robotics.
For example, (Cheng et al., 2019) fabricated hydraulically
driven tentacles using alginate-doped acrylamide hydrogel
precursors. More recently, (Mishra et al., 2020)
demonstrated SLA 3D-printed hydrogel bending actuators
that can be pneumatically and hydraulically actuated while
maintaining a stable actuator temperature via autonomic
perspiration to achieve a trade-off between actuation
efficiency and cooling capacity.

3.4 Magnetic Actuation
Hydrogels with embedded ferromagnetic nanoparticles can be
actuated remotely using an external magnetic field without need
for direct contact (Podstawczyk et al., 2020). (Chin et al., 2017)
used a combination of photolithography and casting to
demonstrate magnetically actuated hydrogel drug delivery
devices and gated valves with iron oxide nanoparticles.
Additionally, magnetic particle-embedded hydrogels can be
2PP printed into miniature helices with swimming capabilities
under rotational magnetic fields (Ceylan et al., 2019; Bozuyuk
et al., 2018; deMarco et al., 2019; Park et al., 2019; Cabanach et al.,
2020) fabricated similar structures by casting magnetic
nanoparticles-gelatin mixture in 2PP printed molds.
Alternatively, such microrobots can be made by surface
coating of 2PP printed hydrogel helix with magnetic
nanoparticles (Wang et al., 2018; Koepele et al., 2020; Dong
et al., 2020).

3.5 Acoustic Actuation
Similar to magnetic actuation, acoustic energy can be utilized to
remotely manipulate micro/nano objects in fluid with high
precision (Matouš et al., 2019; Guo et al., 2016; Ozcelik et al.,
2018; Ren et al., 2019; Tao et al., 2019; Fornell et al., 2019).
Hydrogel structures that are acoustically stimulated at their
resonant frequency can manipulate fluids for mixing (Orbay
et al., 2018) or generating fluid flow (Kaynak et al., 2020). In
addition, (Son et al., 2020) constructed a remotely controlled
hybrid gripper with both magnetic and acoustic actuation, where
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the acoustically responsive hydrogel converted ultrasound energy
to heat for temperature-sensitive swelling/de-swelling.

4 SOFT ROBOTIC APPLICATIONS OF 3D
PRINTED HYDROGEL ACTUATORS

The actuation modalities described above have been used for
myriad applications (Li et al., 2020). The most relevant to the field
of soft robotics are manipulation and locomotion. Additionally,
these actuators have use cases in wearables and as origami
structures.

4.1 Manipulators and Locomotors
Devising a gripper to demonstrate the functionality of a
fabrication technique has become a mainstay in the field of
soft robotics, and the subfield of 3D printed hydrogel
actuators is no exception. The main mode of operation for

these finger-like grippers is the reversible bending of
compliant beams to grasp and release objects. For example,
(Mishra et al., 2020) made use of a variably porous hydrogel
layer that enabled sweating of their finger actuator when
introduced to hot environments to facilitate thermoregulation,
which is vital for both biological and engineered systems to
function at peak power for prolonged durations. A
morphologically similar gripper was described by (Yuk et al.,
2017) and was able to grasp and move a live fish using its fingers
while remaining nearly transparent (Figure 2A), made possible
by the low stiffness and visibility of the hydrogels that comprised
the gripper.

3D printed hydrogel actuators have also been used to power
locomotion in soft robots. Similar to grippers, these locomotory
actuators operate by the cyclic deformation of beams, as
demonstrated by (Han et al., 2018) for walking and (Tognato
et al., 2019) for swimming. In the case of cell-powered systems,
the 3D printed hydrogel serves as a compliant structure that is

FIGURE 2 | Examples of various applications of hydrogel actuators whose fabrication involves 3D printing. (A) A hydrogel gripper catches, lifts and releases a live
goldfish without harm. Dotted lines indicates the boundaries of transparent hydrogel structure. Adapted from (Yuk et al., 2017) ©2017 The Authors under the CC-BY 4.0
license. (B) Garment prototype with sweat activated cooling ventilation showing flat ventilation flaps before exercise (left) and curved ventilation flaps after exercise
(right). Adapted from (Wang et al., 2017) ©2017 The Authors under the CC-BY 4.0 license. (C) A hydrogel helical micro swimmer actuated by magnetic field (left).
Swimming velocities of the microswimmers at different rotational frequency at an applied magnetic rotating field of 8 mT. Adapted from (Wang et al., 2018) ©2018 John
Wiley and Sons, Inc. (D) 3D printed tri-layer actuator as modularized origami structure consist of hydrophobic polyurethane top and bottom skins (pink), with a
hydrophilic polyurethane core (white) (left). It shows hydration-dependent bending at skin gaps (right). Adapted from (Baker et al., 2019) ©2019 The Authors under the
CC-BY 4.0 license. All figures are used with permission.
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bent by living materials to achieve locomotion, as demonstrated
by (Pagan-Diaz et al., 2018; Mestre et al., 2019; Cvetkovic et al.,
2014). Beyond walking locomotion, (Wang et al., 2018)
demonstrated a micro-swimming robot using 3D printed
hydrogel actuators (Figure 2C).

4.2 Wearables and Origami Devices
Skin-interfacing materials require low stiffness, making 3D
printed hydrogel actuators well-suited as wearable devices.
These devices provide users with functional and esthetic
utility, as shown by (Wang et al., 2017) where the sweat of
the wearer triggers the opening of cooling vents on
clothing (Figure 2B). Similarly, (Rivera et al., 2020)
demonstrated a hydrogel-textile bilayer actuator that
contracts when dehydrated, with applications as weather-
triggered signage.

Origami structures couple the ease of planar fabrication
methods with the geometric complexity achievable through
folding. Printed as flat structures, origami-actuated hydrogels
can assume complex 3D forms, as demonstrated by (Naficy et al.,
2017; Gladman et al., 2016; Baker et al., 2019), from boxes to
helices. These compliant, biocompatible, biodegradable, foldable
structures morph between distinct configurations in response to
external stimulus (Figure 2D).

5 DISCUSSION

Many 3D printing techniques are capable of creating hydrogel
structures with user-defined geometry and responsiveness to
environmental cues. Using combinations of 3D printing
methods and hydrogels, functioning actuators with a
variety of actuation modalities and potential applications
have been fabricated. This mini-review surveyed the
applications of 3D printing for hydrogel actuator
fabrication and discussed their corresponding strengths and
limitations. However, the applications of these actuators in
soft robotics beyond the lab remain limited due, in part, to the
mechanical properties of hydrogels and the available spatial

resolutions of specific printing techniques. To address these
challenges and broaden the areas of application for 3D
printing hydrogel actuators, future research is needed to
integrate multiple 3D fabrication techniques and utilize the
combined strengths of individual methods in a single
platform. For example, a hydrogel robot may require
features with different spatial resolutions at different
locations on the robot body. To accomplish this, an
extrusion-based method could print bulk material for
features with low resolution and laser-based methods could
make features with high resolution. Such integrated platforms
could also facilitate multi-material integration for additional
functionality. For example, embedded printing methods could
introduce traces of conductive and stimuli-responsive
material into hydrogel systems to create actuators with
embedded sensors. Addressing these challenges through
innovative fabrication techniques will further improve the
performance of hydrogel-based actuators for applications in
soft robotics.
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